PURDUE UNIVERSITY

Michelle Bonahoom (B.S. BE), Hannah Cook (B.S. BE), and Paige Hiday (B.S. BFPE)

Goals and Objectives

Goal: To create a high fiber nutritional drink to meet the needs of the average adult in a market lacking such products.

Objectives:

- Provide higher amounts of fiber and protein than competitors
- Provide easy way for consumers in 18 24 age demographic to meet nutrition requirements

Motivation:

- Dietary fiber intake reduces risk of stroke, hypertension, diabetes, etc.
- Most individuals in America consume less than half their recommended levels of dietary fiber

Market and Market Size

- Purdue students, West Lafayette, Lafayette, and Indianapolis (1 million)
- The target demographic is primarily millennials, ages 18 24
- Millennials are largest group of consumers with 26% of population
- The 18 24 age demographic consumes more smoothie type drinks than any other demographic
- Beverage consumption data shows a 5.1% increase in nutritional drink sales between 2014 – 2015

Constraints

- Competitors: Odwalla, Evolutions Fresh, Kombucha, Ensure, Boost
- Consumer preferences in IN
- Processing Time
- Availability of fresh ingredients

Impact and Sustainability

- Spent grain makes up 85% of beer brewing byproducts
- Average water consumption during brewing is 5 - 6 L/beer
- Encourage consumption of
- obesity state

Prototype Analysis

Parameters: Mixing speed, consistency, ingredient amounts, and taste

Observations: spinach particles, color, and semistable emulsion

References:

1. Mussatto SI, Dragone G, Roberto IC. 2005. Brewers' spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1): 1-14. Accessed from: https://www.researchgate.net/publication/223756416 Brewers' Spent Grain Generation Characteristics and Potential Applications 2. Chemical Engineering (Jan. 2014). Economic indicators. Accessed from: https://mycourses.purdue.edu/bbcswebdav/pid-8398994-dt-content-rid-34588701 1/courses/wl 16002.201720/wl 19705.201710 ImportedContent 20160824041943/wl 16001.201620 ImportedContent 20160112010929/EconomicIndicators2014 xid-9105708 1.pdf

3. Mintel. 2016. Beverage Blurring (Market Breakdown) [online]. Mintel Group Ltd. Available from Mintel database with permission from Purdue University. Accessed 2016 October 3.

4. Mussatto SI, Dragone G, Roberto IC. 2005. Brewers' spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1): 1-14. Accessed from: https://www.researchgate.net/publication/223756416 Brewers' Spent Grain Generation Characteristics and Potential Applications

CAPSTONE/DESIGN EXPERIENCE 2017 High Fiber Nutrition Drink Agricultural Biological

Product Recipe

Ingredient	Functionality	Amount per Batch (lbs)
Apples	Flavor/Nutrition	552
Bananas	Flavor/Nutrition	552
Spinach	Nutrition	165
Cocoa Powder	Flavor	11
Water	Reduce Viscosity	2,370
PB2	Flavor/Protein	165
Spent Grain	Fiber	88
Oil	Emulsifier	552

nutrient dense food in a high

Processing Requirements

	Amount	Unit
Produce/Powder Inputs	1,202	lbs
Spent Grain Input	88	lbs
Cycle Time	2	days
Wastes	300	lbs/batch
Water Req. for Product	75	L
Water Req. for Processing	1,000	L
Thermal Load	2,522.32	MJ
Monthly Production	150,000	bottles

Technical Advisor and Instructor: Dr. Martin Okos

Acknowledgements: Special thanks to Troy Tonner, Yvonne Hardebeck, and **Carol Weaver**

For a serving size of 8 fluid ounces, we meet 33% of the daily recommended amount of fiber and 24% of the daily recommended amount of protein for an adult female.

Refrigerated Storage

Process Flow

)ro					مار															
Process Schedule									Т	Day 2														
12	13	14	15	16	17	18	19	20	21	22	23	24	1	2	3	4	5	6	7	8	9	10	11	12
					$ \longrightarrow $			$ \rightarrow $																
		_																						
												Da	у З											
24	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Alternatives

- Drying spent grain was considered, but was deemed a waste of energy
- Blending/Milling: food processor, blender
- Emulsification: high pressure homogenizer
- Pasteurization: UV, pulse light treatment, high speed pressure

	Dres
Annual	
Manufacturing Co	
A. Direct Production	
2. Operating Lab	
3. Direct Supervi	
4. Utilities	<u></u>
5. Maintenance a	and R
6. Operating Sup	plies
7. Laboratory Ch	arges
8. Patents and Ro	oyalti
B. Fixed Charges	
1. Depreciation 2. Local Taxes	
3. Insurance	
4. Rent	
5. Financing	
C. Plant Overhead	Cost
General Expenses	
A. Administrative	Costs
B. Distribution and	
C. Research and D	
Total Product Cos	t
Years of Operation	Pro
1	
2 3	
<u> </u>	
5	
6	
-	
12,000,000	
10,000,000	
8,000,000	
(5)	
tz 6,000,000	
Õ	
8 4,000,000	
4,000,000	×
8 4,000,000 2,000,000	2
4,000,000	2
4,000,000	2
4,000,000	
4,000,000	
4,000,000	
4,000,000	
4,000,000	
4,000,000	nos
4,000,000 2,000,000 - 0	mos

Create and implement public marketing strategies

Research additives to alter the finished appearance

Lower production costs

PURDUE AGRICULTURE PURDUE UNIVERSITY

Economic Analysis

duction	Cost, \$	Entity	Cost, \$
	6,487,500	Direct Costs	
Costs	5,190,000	1. Purchased Equipment Delivered	280,898
	2,595,000	2. Purchased Equipment Installed	126,404
	865,000	3. Instrumentation and Controls	73,033
y and Clerical Labor	86,500	4.Piping	87,078
	1,470,500		
Repairs	113,033	5. Electrical Systems	28,090
es	16,955	6. Buildings	81,460
es	129,750	7. Yard Improvements	33,708
ties	0	8. Service Facilities	154,494
	865,000	Total Direct Plant Cost	848,312
	141,292	Indirect Costs	
	58,989	1. Engineering and Supervision	89,887
	17,697	2. Construction Expenses	95,505
	480,000	3. Legal Expenses	11,236
	166,724	4. Contractor's Fee	53,371
sts	432,500	5. Contingency	103,932
	2,162,500	Total Indirect Plant Costs	353,931
ts	173,000		-
arketing Costs	432,500	Fixed Capital Investment	1,179,772
lopment Costs	432,500	1. Working Capital	210,674
	8,650,000	Total Capital Investment	1,412,917

roduction Capacity	Annual Revenue	Annual Product Costs	Annual Cash Flow	ROI
25%	2,475,000	3,112,310	-372,960	-26.4%
50%	4,950,000	5,044,817	12,694	0.9%
75%	7,425,000	6,840,470	439,405	31.1%
100%	9,900,000	8,644,618	863,567	61.1%
100%	9,900,000	8,617,483	871,707	61.7%
100%	9,900,000	8,595,657	878,255	62.2%

Costs Per Bottle	Cost <i>,</i> \$
Production Cost	4.73
Sale Price	5.50
Profit	0.77

Equipment	Cost, \$
Blending	34,182
Milling	13,673
Emulsification	36,193
Pasteurization	46,850
Packaging	150,000
Total Equipment Costs	280,898

Future Work

st effective plant arket

Continue to evaluate process for bottlenecks and areas of improvement

Profitability of differently sized finished products

Develop defined roles for managerial positions

Purdue University is an equal opportunity/equal access institution.